skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, H-W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A paradigm in paleoclimatology holds that shifts in the mean position of the Intertropical Convergence Zone were the dominant climatic mechanism controlling rainfall in the tropics during the last glacial period. We present a new paleo-rainfall reconstruction based on speleothem stable oxygen isotopes record from Colombia, which spans most of the last glacial cycle. The strength and positioning of the Intertropical Convergence Zone over northern South America were more strongly affected by summer insolation at high northern latitudes than by local insolation during the last glacial cycle, resulting in an antiphased relationship with climate in the Cariaco Basin. Our data also provide new insight into how orbital forcing amplified/dampened Intertropical Convergence Zone precipitation during millennial-scale events. During Greenland Stadial events, the Intertropical Convergence Zone was positioned close to the latitude of El Peñon, as expressed by more negative δ18O values. Greenland Interstadial events are marked by relatively high stable oxygen isotope values and reduced rainfall in the El Peñon record, suggesting a northward withdrawal of the Intertropical Convergence Zone. During some Heinrich Stadial events, and especially Heinrich Stadial 1, the Intertropical Convergence Zone must have been displaced away from its modern location near El Peñon, as conditions were very dry at both El Peñon and Cariaco. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    ABSTRACT We perform analysis of the 3D kinematics of Milky Way disc stars in mono-age populations. We focus on stars between Galactocentric distances of R = 6 and 14  kpc, selected from the combined LAMOST Data Release 4 (DR4) red clump giant stars and Gaia DR2 proper motion catalogue. We confirm the 3D asymmetrical motions of recent works and provide time tagging of the Galactic outer disc asymmetrical motions near the anticentre direction out to Galactocentric distances of 14 kpc. Radial Galactocentric motions reach values up to 10 km s−1, depending on the age of the population, and present a north–south asymmetry in the region corresponding to density and velocity substructures that were sensitive to the perturbations in the early 6  Gyr. After that time, the disc stars in this asymmetrical structure have become kinematically hotter, and are thus not sensitive to perturbations, and we find the structure is a relatively younger population. With quantitative analysis, we find stars both above and below the plane at R ≳ 9 kpc that exhibit bending mode motions of which the sensitive duration is around 8  Gyr. We speculate that the in-plane asymmetries might not be mainly caused by a fast rotating bar, intrinsically elliptical outer disc, secular expansion of the disc, or streams. Spiral arm dynamics, out-of-equilibrium models, minor mergers or others are important contributors. Vertical motions might be dominated by bending and breathing modes induced by complicated inner or external perturbers. It is likely that many of these mechanisms are coupled together. 
    more » « less